skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Olshevsky, Alexander"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this paper, we investigate the problem of actuator selection for linear dynamical systems. We develop a framework to design a sparse actuator schedule for a given large-scale linear system with guaranteed performance bounds using deterministic polynomial-time and randomized approximately linear-time algorithms. First, we introduce systemic controllability metrics for linear dynamical systems that are monotone and homogeneous with respect to the controllability Gramian. We show that several popular and widely used optimization criteria in the literature belong to this class of controllability metrics. Our main result is to provide a polynomial-time actuator schedule that on average selects only a constant number of actuators at each time step, independent of the dimension, to furnish a guaranteed approximation of the controllability metrics in comparison to when all actuators are in use. Our results naturally apply to the dual problem of sensor selection, in which we provide a guaranteed approximation to the observability Gramian. We illustrate the effectiveness of our theoretical findings via several numerical simulations using benchmark examples. 
    more » « less
  2. We consider the problem of recovering a rank one matrix when a perturbed subset of its entries is revealed. We propose a method based on least squares in the log-space and show its performance matches the lower bounds that we derive for this problem in the small perturbation regime, which are related to the spectral gap of a graph representing the revealed entries. Unfortunately, we show that for larger disturbances, potentially exponentially growing errors are unavoidable for any consistent recovery method. We then propose a second algorithm relying on encoding the matrix factorization in the stationary distribution of a certain Markov chain. We show that, under the stronger assumption of known upper and lower bounds on the entries of the true matrix, this second method does not have exponential error growth for large disturbances. Both algorithms can be implemented in nearly linear time 
    more » « less
  3. We consider the problem of learning the qualities w_1, ... , w_n of a collection of items by performing noisy comparisons among them. We assume there is a fixed “comparison graph” and every neighboring pair of items is compared k times. We will study the popular Bradley-Terry-Luce model, where the probability that item i wins a comparison against j equals w_i/(w_i + w_j). We are interested in how the expected error in estimating the vector w = (w_1, ... , w_n) behaves in the regime when the number of comparisons k is large. Our contribution is the determination of the minimax rate up to a constant factor. We show that this rate is achieved by a simple algorithm based on weighted least squares, with weights determined from the empirical outcomes of the comparisons. This algorithm can be implemented in nearly linear time in the total number of comparisons. 
    more » « less